

Mega Castings allow high functional integration with reduced complexity but require high CAPEX

Motivation:

- High functional/parts integration
- Reduced manufacturing complexity:
 - Reduced number of robots & tools
 - No supplier chain (raw material as input)
 - Simplified change-over between variants / new vehicles
- Reduced costs

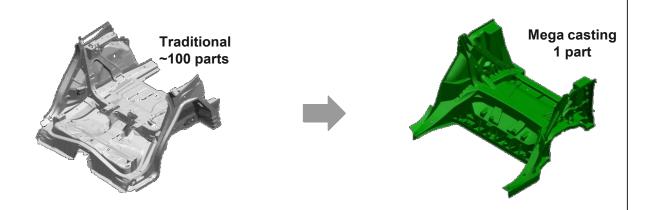
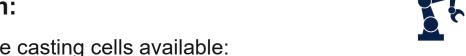
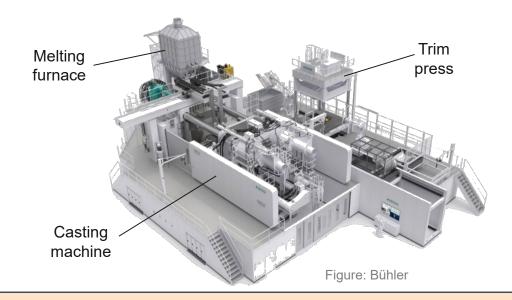




Figure: Volvo, Aachen Body Engineering Days 2022

Production:

- Complete casting cells available:
 - Huge dimensions, casting machine > 400 ton
 - High melt demand requires melting furnace inside the cell
- Process enables up to 100% material utilization
- No heat treatment: Use of self hardening alloys

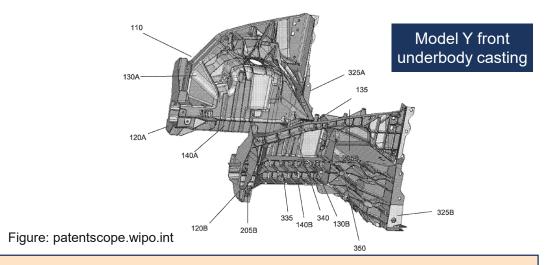
Benefits due to mega casting are accompanied by high initial investments in new & complex production facilities

Aluminum Mega Castings applicable in underbody structures but challenge lightweight and crash design

Application:

- Currently mainly seen for rear underbody:
 - Tesla applies mega casting also in the front
- Further upcoming applications may be (structural) battery cases or the entire underbody of a small battery-electric vehicle
- In general, mega casting does not allow for very low thicknesses: Not less than 2 to 3 mm

Model 3 - 171 pieces of metal highlighted



Model Y - Front & rear underbody as single-piece castings

Performance:

- Casting design from scratch is mandatory
- » Lightweight potential limited due to thickness restrictions
- » Limited ductility
 - Crash requirements:
 - Tesla patent: Various geometrical designs & techniques to achieve progressive & repeatable deformation & fracture behaviour

Application currently mainly for the rear underbody. A casted front structure is more challenging but feasible

Aluminum Mega Castings: the next big thing in Body design?

Challenges:

- » Corrosion resistance:
 - » Aging is not yet known
- » Reparability:
 - Limited to approved areas ➤ Else a replacement would be necessary
 - Robust repair methods as well as alloys must be developed
- » High maintenance effort for production
 - But: Offers possibility to continuously update dies (performance or technological updates)
- » High level of knowledge & corresponding experts required
- » High initial invest:
 - Especially with regard to brownfield approach

Potential Questions for Businesses:

Market Intelligence:

- Which OEMs use or are actually looking at mega casting platforms, vehicle models, parts?
- How is the emerging value chain structured?

Functional/Parts Integration:

- Possible areas of application which parts reduction ratios are achieved?
- What are the implications on body design?

Production:

- Casting boundary conditions, e.g. cycle times?
- What are the production & investment costs?

Performance:

- Lightweight potential compared to other designs?
- What about crash requirements & reparability?

Sustainability:

How is the carbon footprint performance of mega casting along the life cycle compared to conventional designs? fka GmbH Steinbachstr. 7 52074 Aachen Germany

phone +49 241 8861 260

e-mail michael.hamacher@fka.de

web www.fka.de

Dr. Michael Hamacher

